
Week 5 - Wednesday

 What did we talk about last time?
 Overview of getopt()
 POSIX IPC
 Started POSIX message queues

 Message queues are a form of message-passing IPC
 But don't we already have pipes and FIFOs?
 Differences from pipes:
 Messages are sent as units: one whole message is retrieved at a time
 Message queues use identifiers, not file descriptors, requiring special functions

instead of read() and write()
 Messages have priorities, not just first-in-first-out
 Messages exist in the kernel, so killing off the sending process won't destroy

them
 The big difference is structure:
 Pipes and FIFOs send bytes, and the reader can read any number of available

bytes at a time
 Message queues send messages as units

 POSIX message queues have additional features that other
implementations, like System V, might not have

 POSIX message queues:
 Are only removed once they're closed by all processes using them
 Include an asynchronous notification feature that allows processes to

alerted when a message is available
 Have priority levels for messages
 Allow application developers to specify attributes (such as message

size or capacity of the queue) via optional parameters passed when
opening the queue

 mqd_t mq_open (const char *name, int oflag, ...
/* mode_t mode, struct mq_attr *attr */);

 Open (and possibly create) a POSIX message queue.
 int mq_getattr(mqd_t mqdes, struct mq_attr *attr);
 Get the attributes associated with a given message queue

 int mq_close (mqd_t mqdes);
 Close a message queue

 int mq_unlink (const char *name);
 Remove a message queue's name (and the message queue itself, when all processes close it)

 int mq_send (mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned int msg_prio);

 Send a message with a given length and priority
 ssize_t mq_receive (mqd_t mqdes, char *msg_ptr,

size_t msg_len, unsigned int *msg_prio);
 Receive a message into a buffer and get its priority

 The following code creates a message queue and sends "WOMBAT"

 Priority increases as the number increases
 Priorities start at 0 and go up to at least 31, but some systems go as high as 32768
 Read documentation to find out how many priority levels there are

mqd_t mqd = mq_open ("/comp3400_mq", O_CREAT | O_EXCL | O_WRONLY, 0600,
NULL); // mq_open() requires four arguments when creating

if (mqd == -1) // Check for error
{

perror ("mq_open failed");
exit (1);

}

mq_send (mqd, "WOMBAT", 7, 10); // Send WOMBAT (7 chars) with priority 10
mq_close (mqd);

 With pipes and FIFOs, it's common to create a fixed-size
buffer and then read into it, usually only filling part of it

 With message queues, you have to read exactly the size of a
message that's waiting for you
 If not, the read will fail

 Two strategies:
 Use a system where the sizes of messages are always the same
 Use the mq_getattr() function to get the attributes of a message

waiting in the message queue and create a buffer exactly the right
size to read it

 The following code reads the "WOMBAT"message sent by the other code
 It uses mq_getattr() to find out how big of a buffer it needs

mqd_t mqd = mq_open ("/comp3400_mq", O_RDONLY); // Only two arguments to open
assert (mqd != -1);

struct mq_attr attr;
assert (mq_getattr (mqd, &attr) != -1); // Get attributes

char *buffer = calloc (attr.mq_msgsize, 1); // Allocate buffer with size
assert (buffer != NULL);

unsigned int priority = 0;
if ((mq_receive (mqd, buffer, attr.mq_msgsize, &priority)) == -1) // Get message
printf ("Failed to receive message\n");

else
printf ("Received [priority %u]: '%s'\n", priority, buffer);

free (buffer);
buffer = NULL;
mq_close (mqd);

 What if you don't want your code to block when it's trying to
read from or write to a message queue?

 Three alternatives:
1. Bitwise OR O_NONBLOCKwith oflagwhen opening the queue
▪ Doing so will cause your code to return immediately with an error if there's

nothing to read (or no space to write)
2. Use mq_timedsend() and mq_timedreceive()which will

eventually time out
3. Use mq_notify() to send a signal to a process that can then go

read a message after one is added to the message queue

 Shared memory is pretty much the same as using memory-
mapped files
 Except that there's no file associated with the share
 So there's no persistent record of the memory

 To share memory, create a shared memory object (like a file,
but isn't) with shm_open()

 The size of this object is often resized with ftruncate()
 Then, this shared memory object is mapped with mmap(),

as was done with memory mapped files
 To delete the shared memory object, use shm_unlink()

 The shared memory
mapping means that a
region of memory in one
process exactly corresponds
to memory in another region
of memory in another
process

 It's unlikely that the mapped
memory will be in the same
location in virtual memory
for the two processes

Stack

Memory Map

15fe39b2
756f1a80
7b4e621c
34a65aeb

Stack

Memory Map

15fe39b2
756f1a80
7b4e621c
34a65aeb

Process 1 Process 2

 When sharing memory, it could be tempting to share any memory
 Even pointers

 For example, what if you wanted to have two processes both have
access to a linked list?

 It won't work.
 Even shared memory has different addresses in each process's

virtual memory
 If you have to use pointers, use offsets from the start of the shared

memory, rather than pointer variables declared inside the
memory

 name gives the name of the object
 oflag: Access needed, a bitwise OR of flags like O_RDONLY, O_WRONLY, O_RDWR, O_CREAT,

and O_EXCL
 mode: Permissions, a bitwise OR of flags like S_IWUSR and S_IRGRP

 name is the object to delete

 fd is a descriptor for the object or file to resize
 length the is the new size

int shm_open (const char *name, int oflag, mode_t mode);

int shm_unlink (const char *name);

int ftruncate (int fd, off_t length);

 The mmap() function returns memory mapped to a file descriptor or IPC object

 addr is a suggestion for where the memory goes but should usually be NULL
 length is how many bytes to map
 prot are flags shown on the right that can be combined
 flags are MAP_SHARED or MAP_PRIVATE (and others),

depending on whether the area is shared
 fd is an open file descriptor for a file
 offset is the starting point inside the file

 The munmap() function unmaps an existing map

 addr is the start of the mapped address
 length is how much to unmap

void *mmap (void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

Protection Actions permitted

PROT_NONE May not be accessed

PROT_READ Region can be read

PROT_WRITE Region can be modified

PROT_EXEC Region can be executed

void munmap (void *addr, size_t length);

 First, let's imagine a struct declaration for structs that contain
permission information

struct permission
{

int user;
int group;
int other;

};

 A parent process:
 Creates a memory-mapped object
 Stretches it to be exactly the right size
 Maps some memory to this object

int shmfd = shm_open ("/comp3400_shm", O_CREAT | O_EXCL | O_RDWR,
S_IRUSR | S_IWUSR);

assert (shmfd != -1);

// Resize to hold one struct
assert (ftruncate (shmfd, sizeof (struct permission)) != -1);

// Map the object into memory
struct permission *perm = mmap (NULL, sizeof (struct permission),

PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, 0);
assert (perm != MAP_FAILED);

 Fork the process
 Then, the child process:
 Sets values in the struct
 Unmaps the memory
 Closes the object

pid_t child_pid = fork();
if (child_pid == 0)

{
perm->user = 6;
perm->group = 4;
perm->other = 0;

// Unmap and close the child's shared memory
munmap (perm, sizeof (struct permission));
close (shmfd);
exit(0);

}

 Finally, the parent process:
 Waits for the child to finish
 Outputs the data stored by the child
 Unmaps the memory and closes the object
 Deletes the object

wait (NULL); // Wait for the child to finish

// Read from mapped memory
printf ("Permission bit-mask: 0%d%d%d\n",

perm->user, perm->group, perm->other);

munmap (perm, sizeof (struct permission)); // Unmap
close (shmfd); // Close object
shm_unlink ("/comp3400_shm"); // Delete object

 It might strange to use shm_open() to create a POSIX object
and mmap() to memory map this "file"
 We could just memory map some existing file
 We could use make a POSIX object and read and write it like it was a file

 Advantages to using both:
 shm_open() creates POSIX objects instead of using other files
 shm_unlink() only deletes POSIX objects when no other processes

have connections to them, making it safer
 Using mmap() makes it convenient to do memory accesses instead of file

operations

 Both of the kinds of shared-memory IPC we've talked about often
need synchronization

 Synchronization means controlling when reads and writes
happen to avoid getting meaningless results

 In the previous example, a parent process waited for the child
process to finish writing (and die) before reading

 In general, doing so is undesirable:
 Many communicating processes do not have a parent/child relationship
 Waiting for a process to die means that there can't be back-and-forth

communication

 Semaphores are a simple kind of synchronization
 Internally, they have a counter
 If a process calls wait on a semaphore and the semaphore's value

is 0 or lower, the process will get blocked
 When another process calls post and the counter goes up, a

blocked process will resume (decrementing the counter back to 0
first)

 Many processes can be waiting on a single semaphore, but only
one will resume per call to post

 Waiting on a semaphore is also called decrementing, downing, or
P

 Posting on a semaphore is also called incrementing, upping, or V

 Processes A and B have access to shared memory
 A is writing data, and B wants to read after the writing is done
 A and B also have access to a semaphore initialized to 0
 A increments the semaphore after it finishes writing
 B decrements the semaphore before reading
 Everything works out:
 If B decrements the semaphore before A increments, B will block

until A is done
 If A increments the semaphore before B tries to decrement it, the

semaphore will already be 1, so B will decrement it but not block

 There are POSIX semaphores and System V semaphores
 They have many similarities, but we're only talking about

POSIX semaphores
 POSIX semaphores come in named and unnamed varieties
 Like other POSIX IPC objects, named POSIX semaphores:
 Must have a name that starts with slash, followed by non-slash

characters
 Should be unique from other named POSIX IPC objects

 Return (and possibly create) a named semaphore, using the usual oflag and mode flags
 value determines the initial value of the semaphore (often 0)

 Block if the semaphore's value is 0, decrement after continuing

 Increment the semaphore's value, unblocking a process if the value is 0

 Close a semaphore

 Delete a semaphore

sem_t *sem_open (const char *name, int oflag,
/* mode_t mode, unsigned int value */);

int sem_wait (sem_t *sem);

int sem_post (sem_t *sem);

int sem_close (sem_t *sem);

int sem_unlink (const char *name);

 The parent process creates a semaphore and forks a child
 The child waits on the semaphore and prints "second" after

sem_t *sem = sem_open ("/comp3400_sem", O_CREAT | O_EXCL,
S_IRUSR | S_IWUSR, 0); // Value starts at 0

assert (sem != SEM_FAILED);

pid_t child_pid = fork(); // Fork child, which inherits semaphore
assert (child_pid != -1);

if (child_pid == 0)
{
sem_wait (sem); // Wait for semaphore
printf ("second\n");
sem_close (sem); // Close semaphore
exit(0);

}

 Parent process:
 Prints "first"
 Posts on the semaphore
 Waits for child to die before printing "third"

printf ("first\n");
sem_post (sem);
wait (NULL); // Wait for child to die

printf ("third\n");
sem_close (sem);
sem_unlink ("/comp3400_sem"); // Delete semaphore

 Using a semaphore can be frustrating if you wanted to do other
stuff and get blocked

 Instead of calling sem_wait(), there are two alternatives:

 Tries to decrement the semaphore but gives an error code if it would block

 Waits on the semaphore but waits only for the amount of time specified in
the struct timespec

int sem_trywait (sem_t *sem);

int sem_timedwait (sem_t *sem, struct timespec *time);

 Finish semaphores
 Review

 3 – 4 p.m. office hours canceled today
 Work on Assignment 3
 Due next Monday by midnight!

 Review book sections up to 3.8
 Exam 1 next Monday!
 Review on Friday

	COMP 3400
	Last time
	Questions?
	Assignment 3
	Message Queues
	Message queues
	POSIX message queues
	POSIX message queue functions
	Message queue sending example
	Warning!
	Message queue receiving example
	Asynchronous message queues
	Shared Memory
	Shared memory
	Visualization
	Pointer problems
	Functions
	Review of memory mapping functions
	Example of memory mapping
	Example of memory mapping continued
	Example of memory mapping continued
	Example of memory mapping finished
	Why do we use both?
	Semaphores
	Synchronization
	Semaphores
	Example
	POSIX semaphores
	Semaphore functions
	Semaphore example
	Semaphore example continued
	Trying or waiting
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

